**k = (b+√(b² + 4a²)) ÷ (2a)**; (±a) and (±b)

**This formula also expresses Plato's Divided Line**

**FORCE VECTORS**in unit proportions where Φ = 1.618... 2cos(36)

**Æv →←**= 31/3 ns/m = 3e^8 m/s =

**(√(µε))^-1**= ÆTHEREAL VELOCITY

**Æµ ←→**= 5.4 ns/m = 185e^6 m/s =

**(Æv*Φ)^-1**= ÆTHEREAL PERMEABILITY

**Æε →←**= 2.06 ns/m = 485e^6 m/s =

**(Æv/Φ)^-1**= ÆTHEREAL PERMITTIVITY

**//**************Don't let this part of the expression cause any confusion it is still under review****************//**

**vr →←**= 47.75e^6 m/r =

**(2π√(ÆµÆε))^-1**= VELOCITY RADIANS

**µr ←→**= 29.5e^6 m/r =

**(2πÆµ)^-1**= PERMEABILITY RADIANS

**εr →←**= 77.3e^6 m/r =

**(2πÆε)^-1**= PERMITTIVITY RADIANS

**//*******************************************************************************************************************//**

**(P) Power; (R) resistance; (V) volts; (i) current; (H) Henries; (F) Farads; (T) time; (**

(

*Fh*) upper critical frequency; (*Fl*) lower critical frequency;(

*Fr*) resonance; (k) proportional value**P; µ;**=

*Fh***H s/m**

**R; ε;**=

*Fl***F s/m**

**V; T;**=

*Fr***√(HF) s/m**

**i; k =**

**√(H/F)**(dimensionless) =

**Φ; -Φ; Φ^-1; -Φ^-1**

**Q = a/b**

**QUADRATIC EXPRESSION VARIABLES**

a = V; T;

*Fr*

b = [P - R]; [µ - ε];

*[Fh - Fl]*; [k - k^-1]

c = ±a (redundant)

k = Unit Proportion